Symptomatic co-infection with\textit{ Babesia microti} and \textit{Borrelia burgdorferi} in patient after international exposure; a challenging case in Poland

Joanna Jabłońska, Hanna Żarnowska-Prymek, Joanna Stańczak, Joanna Kozłowska, Alicja Wiercińska-Drapało

\textsuperscript{1} Department of Infectious and Tropical Diseases and Hepatology, Warsaw Medical University, Poland
\textsuperscript{2} Department of Tropical Parasitology, Medical University of Gdańsk, Poland

The report presents a well-documented case of symptomatic co-infection of \textit{Babesia microti} and \textit{Borrelia burgdorferi} in a Polish immunocompetent patient after travelling to Canada and the USA.

\begin{abstract}

The report presents a well-documented case of symptomatic co-infection of \textit{Babesia microti} and \textit{Borrelia burgdorferi} in a Polish immunocompetent patient after travelling to Canada and the USA.

\end{abstract}

\begin{key_words}

immunocompetent host, Babesiosis, Lyme borreliosis, symptomatic coinfection

\end{key_words}

\section{INTRODUCTION}

Babesiosis is a tick-borne zoonosis caused by haemoparasites of the protozoan genus \textit{Babesia}, transmitted by bites from the infected ticks, especially \textit{Ixodes}. The clinical presentation of babesiosis in humans varies from asymptomatic to mild flu-like symptoms to a severe malaria-like disease \cite{1, 2}. In Europe, symptomatic disease occurs in most cases in immunocompromized patients, especially splenectomized, and is caused mainly by \textit{Babesia divergens} \cite{3}. Symptomatic infection by \textit{Babesia microti} occurs in the USA in either immunocompetent or immunocompromised individuals \cite{1, 2, 4}. Lyme disease (LD) or Lyme borreliosis (LB), an emerging infectious zoonosis transmitted by ticks of the genus \textit{Ixodes}, has a worldwide distribution. With approximately 20,000–30,000 confirmed cases reported in 2003–2012 (incidence 7.0/100,000 in 2012) (www.cds.gov/lyme/stats), it has become the most common vector-borne disease in the USA. In Poland, 12,779 (33.2 per 100,000 population) human cases of LB were noted in 2013 (www.pzh.gov.pl) with the highest incidence (100.2/100,000) reported in the north-eastern region (Podlaskie Province). The causative agent of the disease is \textit{Borrelia burgdorferi} sensu lato (s.l.), a bacteria of the family \textit{Spirochaetaceae}. While in Europe, at least five species of the \textit{B. burgdorferi} s.l. complex are pathogenic for humans: \textit{B. afzelii}, \textit{B. garinii}, \textit{B. bavariensis}, \textit{B. spielmani} and \textit{B. burgdorferi} sensu stricto (s.s.) \cite{5}, the latter genospecies is the only human-pathogenic species known in North America \cite{6}.

The case is presented of a symptomatic co-infection of \textit{B. microti} and \textit{Borrelia burgdorferi} in a Polish immunocompetent patient after travelling to Canada and the USA.

\section{CASE REPORT}

A 48-year-old woman was admitted to the Hospital of Infectious Diseases in Warsaw with a fever of 39–40°C, chills, and a headache lasting 10 days. Her previous medical history was non-contributory. Symptoms started during a 5-week-long trip to Canada and the northeastern seashore of the USA, including the White Mountains of New Hampshire, where the patient hiked and camped. Due to the fever and headache, she was started on a 7-day course of norfloxacin by a physician in the USA, but experienced no improvement. During admission, aside from high fever, no abnormalities were found in the physical examination. Her blood at the time revealed the following values: haemoglobin level of 14 g/l, haematocrite value of 42% and white blood cells count of 4.2 G/l. C reactive protein level was high (251 mg/dl), procalcitonine slightly elevated (1 mg%), and elevated liver enzymes activity: ALT – 135 U/l, AST-65 U/l, GGT 222 U/l and ALP 270 U/l. Blood culture was negative.

The patient was treated with a wide spectrum antibiotic regimen: ceftriaxone, amikacin and metronidazole. Body temperature decreased to 37°C, but after 4 days the fever returned. The antibiotic regimen was changed to meropenem and vancomycin. One week after admission, the patient developed facial nerve palsy and stiffness of the neck. In CSF, mild inflammatory changes were found (31 white blood cells/µl, 83% lymphocytes). In blood and in CSF, IgM antibodies against \textit{B. burgdorferi} by ELISA (Borrelia IgM Recombinant Antigen, Biomedica, Austria) were detected. IgM antibody levels were greater in CSF. IgG antibodies were negative. Results were confirmed by Western blot test (recomLine Borrelia Mikrogen, Germany). The recomLine immunoassy was based on recombinant antigens for the determination of IgM and IgG antibodies against \textit{Borrelia burgdorferi} sensu lato in human serum or CSF. In these tests, the OspC homologues of 4 genospecies (\textit{B. burgdorferi} s.s., \textit{B. garinii}, \textit{B. afzelii}, \textit{B. spielmani}) were detected. Reaction IgM with p100, p41 and OspC of four \textit{Borrelia}
The fever, malaise, and headache were resolved in 24 hours. The patient had continuous haemolytic anaemia (minimal haemoglobin 8 g/dl), and developed splenomegaly (178×63 mm by ultrasound) complicated by splenic infarctions. After 3 weeks of treatment, all these symptoms resolved. Facial nerve palsy vanished in 3 weeks. On control three months after discharge patient was symptom-free.

**DISCUSSION**

The presented case describes a symptomatic case of babesiosis and borreliosis in a Polish immunocompetent patient. Diagnosis of *B. microti* infection was well-documented and finally confirmed by specific PCR. As the patient had travelled to the USA, 2 potential sources of babesiosis and borreliosis had to be taken into consideration. An infection with *B. microti* could be acquired in Poland or in North America. The patient camped and hiked in a known endemic area for babesiosis 10 days before developing fever and 3 weeks before symptoms of neuroborreliosis. Thus it was supposed that the source of both infections was American, although *B. microti* homologous to isolate Gray has also been recently detected in *I. ricinus* from Poland [9]. *B. microti* can cause symptomatic illness in immunocompetent persons and many such cases have been reported in USA [1, 4]. In the Western blot test, reactivity with OspC of 4 *Borrelia* genospecies was observed and the strongest reaction with *B. garinii*, which is the most frequently cause of neuroborreliosis in Europe. It is possible that Lyme disease had a Polish origin and superinfection with *B. microti* caused the onset of the neurological symptoms.

The majority of described *Babesia* infections in Europe are caused by *B. divergens* [3], while in the USA by *B. microti* [2, 4]. In the USA there are 7 endemic regions, whereas in Europe there is almost no data available about the *Babesia* epidemiology. Although both species have been isolated from *Ixodes* ticks in different European countries, cases of *B. microti* human infection are rare [2, 3]. However, one confirmed and 2 probable autochthonous cases have been recently reported from Germany [10] and Switzerland [11], respectively. The studies on seroprevalence of *Babesia* antibodies in humans exposed to ticks in Germany showed that 5.4% and 3.6% of investigated group (476) were seropositive for *B. microti* and *B. divergens*, respectively [12]. Serum samples from 1.5% of 396 Swiss residents reacted to *B. microti* antigen [13]. These results suggest that both species can infect the European population more frequently than previously believed.

In Poland, the first imported case of human babesiosis was described in 1997, and concerned a Polish sailor who travelled to the USA, 2 potential sources of babesiosis and borreliosis had to be taken into consideration. An infection with *B. microti* could be acquired in Poland or in North America. The patient camped and hiked in a known endemic area for babesiosis 10 days before developing fever and 3 weeks before symptoms of neuroborreliosis. Thus it was supposed that the source of both infections was American, although *B. microti* homologous to isolate Gray has also been recently detected in *I. ricinus* from Poland [9]. *B. microti* can cause symptomatic illness in immunocompetent persons and many such cases have been reported in USA [1, 4]. In the Western blot test, reactivity with OspC of 4 *Borrelia* genospecies was observed and the strongest reaction with *B. garinii*, which is the most frequently cause of neuroborreliosis in Europe. It is possible that Lyme disease had a Polish origin and superinfection with *B. microti* caused the onset of the neurological symptoms.

The presented case describes a symptomatic case of babesiosis and borreliosis in a Polish immunocompetent patient. Diagnosis of *B. microti* infection was well-documented and finally confirmed by specific PCR. As the patient had travelled to the USA, 2 potential sources of babesiosis and borreliosis had to be taken into consideration. An infection with *B. microti* could be acquired in Poland or in North America. The patient camped and hiked in a known endemic area for babesiosis 10 days before developing fever and 3 weeks before symptoms of neuroborreliosis. Thus it was supposed that the source of both infections was American, although *B. microti* homologous to isolate Gray has also been recently detected in *I. ricinus* from Poland [9]. *B. microti* can cause symptomatic illness in immunocompetent persons and many such cases have been reported in USA [1, 4]. In the Western blot test, reactivity with OspC of 4 *Borrelia* genospecies was observed and the strongest reaction with *B. garinii*, which is the most frequently cause of neuroborreliosis in Europe. It is possible that Lyme disease had a Polish origin and superinfection with *B. microti* caused the onset of the neurological symptoms.

The majority of described *Babesia* infections in Europe are caused by *B. divergens* [3], while in the USA by *B. microti* [2, 4]. In the USA there are 7 endemic regions, whereas in Europe there is almost no data available about the *Babesia* epidemiology. Although both species have been isolated from *Ixodes* ticks in different European countries, cases of *B. microti* human infection are rare [2, 3]. However, one confirmed and 2 probable autochthonous cases have been recently reported from Germany [10] and Switzerland [11], respectively. The studies on seroprevalence of *Babesia* antibodies in humans exposed to ticks in Germany showed that 5.4% and 3.6% of investigated group (476) were seropositive for *B. microti* and *B. divergens*, respectively [12]. Serum samples from 1.5% of 396 Swiss residents reacted to *B. microti* antigen [13]. These results suggest that both species can infect the European population more frequently than previously believed.

In Poland, the first imported case of human babesiosis was described in 1997, and concerned a Polish sailor who acquired an infection with *B. microti* in Brazil [14]. Recently, babesiosis has been diagnosed in a patient with ulcerative colitis [15]. Different *Babesia* sp. stages were observed on a Giemsa-stained smear of peripheral blood. The infection was then confirmed by the inoculation of laboratory mice with the patient's blood. However, detection and differentiation of *B. microti* and *B. divergens* by PCR failed. The source of infection remained unknown, but the patient, who lived in the vicinity of forests, declared tick bites. Moreover, in a retrospective study of 24 tick-exposed individuals from south-eastern Poland, *Babesia* spp. was detected in the blood of one person infected with *B. burgdorferi*. Further molecular investigations showed that these piromplasms were 98.9% homologous with *B. divergens* and *Babesia* EU1 [16].
In the reported case, diagnosis of babesiosis was delayed because of lack of awareness of the possibility of symptomatic babesiosis in an immunocompetent woman in Poland. Given the presence of both *Borrelia* spp. and *Babesia* spp. in *Ixodes* ticks in Europe, co-infection may exist in Europe. This report highlights the difficulty in diagnosing such cases and the necessity for careful anamnesis to consider appropriate differentials. Babesiosis should be taken into consideration in differential diagnosis in patients with acute febrile disease and history of tick bite or tick exposure. Giemsa-stained smear of peripheral blood is a good diagnostic tool even in the absence of easy accessibility to specific diagnostic tests, but to make diagnosis sure specific PCR and serologic tests should be done.

The patient gave written permission for publication of this case report.

REFERENCES