INTRODUCTION

Livestock and poultry production facilities are associated with much higher concentrations of airborne microorganisms compared to the ambient environment [1, 2, 3]. The airborne microorganisms and their harmful components may not only jeopardize the health status of animals and caretakers inside barns [4, 5, 6, 7], but also pose the risk of spreading disease between barns if pathogenic species are emitted outside [8]. In response to or in anticipation of State or Federal legislation on animal welfare, some egg producers are building or planning to build aviary cage-free hen-housing systems. While the aviary systems (featuring a littered floor in addition to perches and nesting boxes) well accommodate hen natural behaviours (e.g. dust bathing, foraging, perching, etc.), they tend to have higher levels of airborne microorganisms than the traditional membrane acidic electrolyzed water (MLAEW) spray has been applied in swine and poultry houses to inactivate airborne microorganisms. Chuang et al. [12] reported that the level of total airborne bacteria was reduced by 70% by spraying MLAEW in a cage hen house. Wu et al. [13] found a reduction of total airborne bacteria was reduced by 70% by spraying MLAEW in a cage hen house. Consequently, practical means to improve the indoor air quality in such alternative housing systems are highly desirable.

Membraneless acidic electrolyzed water (MLAEW) is an anti-microbial agent produced by electrolyzing a dilute solution of sodium chloride (NaCl) or hydrochloric acid (HCl), generating the major germicidal component – free chlorine (including ClO-, HClO and Cl2). Compared to the traditional membrane acidic electrolyzed water (pH < 3.0, oxidation reduction potential ‘ORP’ > 1,000 mV), the MLAEW has a similar anti-microbial ability, but is less corrosive and easier and cheaper to produce due to its near neutral pH value (6–7) and lower ORP.

This study investigated the loss of free chlorine (FC – the major germicidal component in MLAEW) over distance during spraying, as affected by air temperature and initial FC concentration. The anti-microbial effect of MLAEW on airborne bacteria from an aviary laying-hen house was examined.
of 98% in total bacteria and 68% in fungi after spraying MLAEW in a swine house. In addition, our recent research revealed significant microbial inactivation from MLAEW application in a pilot-scale aviary hen environment.

Although the effectiveness of MLAEW spraying on microbial inactivation in livestock houses has been confirmed, some aspects of this novel technique have not been explored in detail, nor has the loss of free chlorine (FC) in the MLAEW aerosols during spraying:

1) Free chlorine in MLAEW aerosols may be lost due to Cl\textsubscript{2} volatilization, as a result, the germicidal effect of MLAEW aerosols is attenuated. The magnitude of FC loss is affected by factors such as air temperature and initial aerosol diameter, and is exacerbated over distance from the spray origin.

2) Although much research has been dedicated to characterize the inactivation of food-associated microorganisms by MLAEW with different FC levels, the required FC concentration of MLAEW for inactivating airborne microorganisms in an aviary poultry house is unknown.

In order to achieve precise management and optimize the anti-microbial effect of MLAEW application in aviary houses, the above-mentioned aspects need to be addressed.

Objective. The objective of the presented study was to investigate the FC loss from MLAEW aerosols over distances from spray origin at different air temperatures (18, 25, or 32 °C), and the effect of FC concentration (15 vs. 60 mg L-1) on such loss. The changes in pH and ORP of the aerosols were also examined. Airborne bacteria were sampled from a commercial aviary house and challenged with the MLAEW at different FC concentrations collected under the above conditions.

MATERIALS AND METHODS

MLAEW production. A cylindrical plastic electrolyzing container (height × diameter = 32 × 19 cm) was used in this study to produce MLAEW (Fig. 1). The container consisted of a water tank and a lid installed with two anode and one cathode metal plates (cast iron). The three electrode plates were identical in size (length (L) × width (W) = 15 × 12.5 cm), fixed in parallel to the anode plate in the middle. The gap between two adjacent plates was 1 cm. A tap was installed near the bottom of the container to obtain MLAEW without opening the lid.

The MLAEW was produced by electrolyzing 5-L 0.1% NaCl solution (5 g NaCl in 5 L tap water) at 8 VDC. Based on our previous experiments, the FC production rate was 4.9 mg L-1 min-1 at this NaCl concentration and voltage. MLAEW with low (app. 15 mg L-1) and high (app. 60 mg L-1) FC concentrations was produced by electrolyzing the 0.1% NaCl solution for 3 and 12 min, respectively. Since spraying the liquid with pH > 7 may potentially increase ammonia (NH\textsubscript{3}, an alkaline gas) emissions in animal houses [14], the pH of the MLAEW was adjusted to 6 – 7 by adding HCl after electrolyzing.

MLAEW spray and collection. MLAEW was sprayed using a spray gun (PILOT Mini, 0.5 mm nozzle, Walther Pilot NA, Chesterfield, MI, USA) connected to an air compressor (Model # 204100, Campbell Hausfeld, Harrison, OH, USA) at 1.4 bar. The initial aerosol size distribution was delineated using Particle Image Velocimetry (PIV) technology. The PIV system takes two images at 5×10-7 s intervals using a high resolution CCD camera (PCO 1600, PCO-TECH Inc., Romulus, MI, USA). Through knowing the size of one pixel, the PIV technology determines the size of each aerosol by counting the number of pixels an aerosol covers in the image. The size distribution profile (volumetric frequency distribution of aerosols at different sizes) was developed by combining the size information of all aerosols in a small area (1×1 cm) near the nozzle. The velocity of each aerosol can be also determined by dividing its relative locomotion in the two consecutive images by the imaging interval.

MLAEW with either low or high FC concentration was sprayed at 18, 25 and 32 °C air temperature in a climate-controlled room. The sprayed MLAEW aerosols were collected using glass petri-dishes at three distances − 0, 25, and 50 cm from the nozzle of the spray gun. Characteristics of MLAEW at farther distances were of less interest because in practice MLAEW would be sprayed to the source (litter) of airborne microorganisms from a short distance to minimize the FC loss, thus achieving the optimal anti-microbial effect. The four MLAEW samples (one original and three collected at different distances) were transferred to individual dark tubes before further analysis.

Analysis of MLAEW. Immediately after MLAEW samples had been obtained, their FC, pH, and ORP were analyzed. Free chlorine was quantified using a colorimeter (Martini MI-413 Free & Total Chlorine, Milwaukee Instruments, Rocky Mount, NC, USA). This colorimeter can measure (N,N-diethyl-p-phenylenediamine, or ‘DPD’ method) free or total chlorine up to 10 mg L-1. Whenever the FC concentration in an MLAEW sample exceeded this limit, its diluted sample (using de-ionized water) was analyzed and the FC concentration in the original sample was calculated using the dilution factor. Values of pH and ORP were measured using respective meters (pH 3300i, WTW, Weilheim, Germany).

Collection of airborne bacteria. On the same day of MLAEW spray application, airborne bacteria were collected from a commercial aviary house in central Iowa. The aviary house measured 150.8 × 21.4 m and had a capacity of 50,000 laying hens. The hens were introduced to this house at 16 weeks of
age. They were kept in the aviary colonies until 22 weeks old when they were given litter floor access for dust bathing and foraging for about 8–10 h per day. In total, eight times of air samplings (on eight different days) were conducted in December 2012 when the hens were 33–36-weeks-old.

The airborne bacteria were collected at 30 cm above the litter floor for 25 min using an all glass impinger (AGI-30, Ace Glass Incorporated, Vineland, NJ, USA) with 20 mL of physiological saline. Twenty mL of physiological saline was used as the collection medium. The AGI-30 was designed for collecting total airborne microorganisms without distinguishing their size at a nominal air flow rate of 12.5 L min⁻¹. After sampling, the liquid microbial sample was transferred to a 50 mL sterile centrifuge tube and kept at 4 °C before further use. The thermal environment in the aviary house was monitored using a temperature and relative humidity (RH) sensor (HOBO® Pro Series, ONSET, Bourne, MA, USA) on sampling days, and the average temperature and RH were 23.1 ± 1.2 °C and 68 ± 7%, respectively, during air sampling.

Inactivation of airborne bacteria by MLAEW. To investigate the anti-microbial effect of MLAEW, MLAEW samples (original and those collected at different distances) of three spray events were used to treat the bacteria collected from the aviary hen house. A volume of 1.8 mL of MLAEW sample (treatment) and sterile de-ionized water (control) was separately prepared in sterilized tubes at room temperature. An aliquot (0.2 mL) of the liquid bacterial sample was individually added to the prepared tubes and mixed by vortexing for 5 s. After 0.5, 2 and 5 min, 0.2 mL of each treated sample was transferred to a sterile tube containing 1.8 mL of neutralizing buffer solution (0.5 sodium thiosulphate + 0.03 M phosphate buffer solution, pH = 7.1) and mixed by vortexing. The samples were neutralized for 5 min, then viable count of total bacteria and Gram-negative bacteria in each sample were determined by plating 0.2 mL portions directly or after serially diluted (1:10) in physiological saline on trypticase soy agar (TSA, for total bacteria plates (Catalog No. R455002, Fisher Scientific, Hanover Park, IL and Macconkey No. 3 for Gram-negative bacteria, Catalog No. OXCM0115B, Fisher Scientific, Hanover Park, IL, USA). The plates were aerobically incubated at 37 °C for 24 h (total bacteria) or 48 h (Gram-negative bacteria).

An enrichment experiment was further conducted to determine the presence of low survivals that might not be detected using direct plating. For total bacteria, 0.5 mL of the suspension was transferred to a sterile tube containing 50 mL of trypticase soy broth (TSB, Catalog No. R455052, Fisher Scientific, Hanover Park, IL, USA), and incubated at 37 °C for 48 h. Following enrichment, 0.5 mL culture suspension was spread on TSA plate, and the plate incubated at 37 °C for 48 h before counting. The same procedure was applied to Gram-negative bacteria enrichment and culturing, except that Macconkey broth and Macconkey No. 3 agar was used (7185, Neogen Corp., Lansing, MI, USA).

Statistical analysis. Each treatment (air temperature × FC concentration) was repeated six times. The FC loss in MLAEW aerosols was categorized into rate of initial loss and travelling loss. The initial loss was calculated using Eq. 1; while the travelling loss rate (% per cm of aerosol travel distance, or % cm⁻¹) was the slope in the linear regression of FC concentrations in MLAEW aerosols vs. the correspondent distance (0, 25, or 50 cm from the nozzle) where the aerosols were collected. Differences in FC concentration and anti-microbial effect among treatments were compared using General Linear Model (GLM) of Statistical Analysis System (SAS 9.2, SAS Institute Inc., Cary, NC, USA) at the significance level of 0.05. The Bonferroni procedure was used to adjust multiple comparisons. Minimum FC concentration required for complete bacterial inactivation was expressed as a function of air temperature, distance between nozzle and target, and MLAEW-bacteria contact time.

\[L_i = \frac{(C_i - C_0)}{C_i} \times 100\% \]

where \(L_i \) is initial loss, %; \(C_i \) free chlorine concentration in original MLAEW solution for spray, mg L⁻¹; \(C_0 \) free chlorine concentration in MLAEW aerosols collected at 0 cm from nozzle, mg L⁻¹.

RESULTS

Figure 2 shows the size distribution of the aerosols in a 1 × 1 cm area near the spray gun with 1.4 bar compressed air. The frequency curve peaked at 34 µm, indicating the most aerosols produced were at this size. The cutoff diameter by volume (\(D_{50} \), aerosol diameter corresponding to 50% cumulative volumetric frequency) was 80 µm. The average velocity of the aerosols was 60.5 m s⁻¹.

The FC concentration was 15.0–16.2 mg L⁻¹ in the original MLAEW electrolyzed for 3 min, and 56.0–59.3 mg L⁻¹ when electrolyzed for 12 min (Tab. 1). FC concentration in the MLAEW aerosols collected at 0 cm from the nozzle was slightly lower than the original MLAEW solution, reflecting an 11.7–13.2% initial loss. There was no difference in initial loss between low and high concentration groups (P = 0.13) or among the three air temperatures (P = 0.57). The FC concentrations of MLAEW aerosols decreased significantly over distance (P = 0.01), with a travelling loss rate of 0.79–1.49% cm⁻¹. Statistical analysis showed that travelling loss exacerbated as air temperature increased (P = 0.02). However, no effect of initial FC concentration on travelling loss was found (P = 0.38).
Table 1. Free chlorine (FC) in original MLAEW solution and in MLAEW aerosols nebulized at two initial concentrations (low: 15.0 – 16.2 mg L\(^{-1}\), high: 56.0 – 59.3 mg L\(^{-1}\)) and three air temperatures (18, 25, and 32 \(^\circ\)C), and initial and travelling FC losses. MLAEW aerosols were collected at three distances (0, 25 and 50 cm) from spray nozzle (n = 6).

<table>
<thead>
<tr>
<th>Initial FC concentration</th>
<th>Air Temperature</th>
<th>FC concentration (±SD, mg L(^{-1}))</th>
<th>Aerosol Travel Distance, cm</th>
<th>Initial loss(^1) (±SD, %)</th>
<th>Travelling loss rate(^2) (±SD, % cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>18 °C</td>
<td>15.0 ± 1.2</td>
<td>13.2 ± 0.7</td>
<td>10.3 ± 1.0</td>
<td>7.5 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>25 °C</td>
<td>16.2 ± 1.0</td>
<td>14.3 ± 1.0</td>
<td>9.0 ± 1.2</td>
<td>6.1 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>32 °C</td>
<td>15.5 ± 1.2</td>
<td>13.5 ± 0.5</td>
<td>7.4 ± 0.5</td>
<td>3.0 ± 0.2</td>
</tr>
<tr>
<td>High</td>
<td>18 °C</td>
<td>56.0 ± 3.4</td>
<td>48.6 ± 2.7</td>
<td>37.6 ± 2.9</td>
<td>29.5 ± 6.4</td>
</tr>
<tr>
<td></td>
<td>25 °C</td>
<td>57.2 ± 4.6</td>
<td>50.1 ± 4.7</td>
<td>34.5 ± 4.9</td>
<td>23.0 ± 6.4</td>
</tr>
<tr>
<td></td>
<td>32 °C</td>
<td>59.3 ± 6.9</td>
<td>51.8 ± 7.6</td>
<td>32.7 ± 5.6</td>
<td>17.8 ± 5.9</td>
</tr>
</tbody>
</table>

\(^1\) FC loss in MLAEW aerosols collected at 0 cm, compared with original MLAEW solution.

\(^2\) FC loss rate during MLAEW aerosols' travelling, expressed as % loss of the FC concentration at 0 cm per cm of distance traveled.

Table 2 shows the pH and ORP of the MLAEW solutions and aerosols. Since the initial FC concentration did not affect either pH (P = 0.44) or ORP (P = 0.67), their values were pooled. The pH and ORP slightly increased after spraying. GLM analysis showed that travel distance (but not air temperature) has significant impact on pH (P = 0.03) and ORP (P = 0.04) of MLAEW.

Table 3 lists the survival of total bacteria treated with de-ionized water (control), original MLAEW solution (low free chlorine concentration) and its aerosols nebulized at three air temperatures, and collected at three distances from the nozzle (n=3).

<table>
<thead>
<tr>
<th>Treatment agent</th>
<th>Air temperature</th>
<th>Agent-free chlorine concentration (±SD, mg L(^{-1}))</th>
<th>Bacteria concentration (±SD, log CFU mL(^{-1}))</th>
<th>Treatment duration (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-ionized water</td>
<td>-</td>
<td>0.3 ± 0</td>
<td>5.3 ± 0.1</td>
<td>Before treatment 0.5</td>
</tr>
<tr>
<td></td>
<td>18 °C</td>
<td>15.2 ± 1.0</td>
<td>< 2.7 (^1) ND (^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 °C</td>
<td>13.1 ± 0.7</td>
<td>< 2.7 (^1) ND (^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 °C</td>
<td>15.0 ± 0.9</td>
<td>< 2.7 (^1) ND (^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>15.9 ± 0.9</td>
<td>< 2.7 (^1) ND (^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>14.0 ± 0.5</td>
<td>< 2.7 (^1) ND (^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>5.8 ± 1.0</td>
<td>4.4 ± 0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>15.0 ± 0.9</td>
<td>3.8 ± 0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>13.8 ± 0.7</td>
<td>3.2 ± 0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>7.4 ± 0.7</td>
<td>4.8 ± 0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>3.0 ± 1.6</td>
<td>5.1 ± 0.3</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) All three samples negative by direct plating culture, but at least one sample was positive by enrichment.

\(^2\) All three samples negative by both enrichment and direct plating culture.

The MLAEW aerosols collected at 50 cm from the nozzle reduced bacteria count by:

- 0.3 – 1.2 log CFU mL\(^{-1}\) in 0.5-min treatment;
- 1.3 – 1.9 log CFU mL\(^{-1}\) in 2-min treatment;
- > 2.0 log CFU mL\(^{-1}\) in 5-min treatment.

The original MLAEW solutions with high FC concentrations and their aerosols killed all bacteria in 0.5-min treatment, except for the aerosol samples collected...
at 50 cm and 32°C air temperature which required 2-min treatment for complete inactivation (data not shown). No Gram-negative bacteria were detected in the air samples from the aviary house, either by direct plating culture or by enrichment; therefore, its inactivation using MLAEW was not examined.

Figure 3 shows the bacterial inactivation using MLAEW at different FC concentrations. It can be seen that MLAEW with lower FC concentrations required more contact time to increase inactivation of bacteria.

Figure 3. Inactivation of bacteria collected from aviary hen house treated with MLAEW at different free chlorine concentrations, and treatment time 0.5, 2 or 5 min

More than 99% of bacteria were killed when treated by MLAEW with FC > 10 mg L⁻¹ within 0.5 min. The complete bacteria inactivation (negative by enrichment) required FC concentration > 16.8 mg L⁻¹ in 0.5-min treatment, > 13.9 mg L⁻¹ in 2-min treatment and > 7.2 mg L⁻¹ in 5-min treatment. Combining the FC loss during spraying over distance (Tab. 1), the following model (Fig. 3) was developed to estimate the minimum FC level in the MLAEW for complete bacterial inactivation in aviary houses using air the spray technique (aerosol cutoff diameter = 80 µm). Values in brackets are the standard errors of coefficients:

\[
 FC_{\text{min}} = 6.88 \pm (1.14)e^{0.026(\pm0.002)D+0.033(\pm0.004)\text{Temp} - 0.193(\pm0.014)\text{Time}} \\
(\text{Adjusted } R^2 = 0.89)
\]

\(FC_{\text{min}} \): minimum FC concentration for complete bacterial inactivation, mg L⁻¹
\(D \): distance between spray nozzle and target, cm
\(\text{Temp} \): air temperature at which MLAEW is sprayed, °C
\(\text{Time} \): contact time needed for complete bacterial inactivation, min.

DISCUSSION

Spraying MLAEW is increasingly used to inactivate airborne microorganisms in animal and other agricultural/food production situations [15, 16]. However, loss of the anti-microbial components during spraying and their influencing factors has not been well understood; as a result, precise management of MLAEW application is compromised.

The presented study investigated changes in MLAEW characteristics over spray distance under different air temperatures and initial FC concentrations, and inactivation of airborne bacteria from a commercial aviary hen house using the MLAEW. The results show significant FC loss during the air spray. This loss must be considered in practical application since it is the sprayed aerosols, not the original MLAEW solution, that eventually comes into contact with the microorganisms and plays the anti-microbial role. Similar to the finding in this study, Wu [13] reported a 39.2–59.3% FC loss in MLAEW aerosols (diameter = 5–8 µm) collected at 1 m distance from the nozzle. However, direct comparison of FC loss between the presented study and the study by Wu is difficult because of the different spray techniques (hydraulic vs. air) and parameters (e.g. initial aerosol size and air temperature, etc.) used in the two studies.

The FC loss during spraying was further categorized into initial and travelling losses. It was found that initial losses were similar (11.7–13.2%), regardless of the air temperature at which spraying was carried out. This was within expectations because the initial loss was a result of sudden aerosolization near the nozzle in a short period of time; thus it is mainly determined by the spraying technique and initial aerosol diameter, but not the air temperature. In contrast, the travelling loss rate was positively related to the air temperature (P < 0.05), presumably because the aerosols evaporated faster at higher temperatures, which in turn increased the relative exposure surfaces of aerosols and release and decomposition of the germicidal components [17]. This positive relation could also be attributed to the fact that the aerosols were heated-up faster at a higher air temperature, so that the Cl₂ off-gas increased due to the higher chlorine vapour pressure. Specifically, a 0.79–0.87% FC loss was found per cm of MLAEW aerosol travel distance at 18°C versus 1.35–1.49% cm⁻¹ loss at 32°C. This result suggests that higher initial FC concentrations are needed when MLAEW is sprayed at a higher air temperature in order to obtain final aerosols with a similar anti-microbial effect. No significant effect of initial FC concentration on FC loss was noticed.

Ammonia is a major air pollutant in poultry houses that can have adverse effects on the occupants and the ecosystem. In practice, the pH value of the MLAEW aerosols should ideally remain acidic (< 7) to suppress, or at least not stimulate, NH₃ volatilization from litter and manure. Sprayed at pH of 6.7–6.9, it was found the pH of MLAEW aerosols increased over 7 after spraying, likely due to the release of acidic components, e.g. HCl and Cl₂, from the aerosols. This suggests that the field MLAEW application may require a pH value lower than 6.7. At the same time, it should be noted that the elevation of pH (0.3–0.5) during spraying is quite small. A slight increase in ORP was noticed for MLAEW aerosols collected at 0 cm, compared to the original MLAEW solution, following a gradual decrease while the aerosols were travelling. Although ORP was suggested to be the primary factor responsible for the anti-microbial effect [18], more recent research has revealed that higher ORP did not show better germicidal effect; instead, FC played the primary role in microbial inactivation [19]. In fact, it was shown that MLAEW with low ORP (238 mV) had better bactericidal activity than a high ORP disinfectant at the same FC concentration [20].

Several studies have been carried out to examine the bactericidal effect of MLAEW on poultry-related bacteria. While all the studies reported significant bacteria reduction by MLAEW solutions, discrepancies exist in their bactericidal
effect. Cao et al. [20] observed that MLAEW (FC = 6 mg L\(^{-1}\), pH = 6.35, ORP = 238 mV) completely inactivated Salmonella enteritidis within 2 min; whereas Venkitanarayanan et al. [21] found that 10 min was needed to eliminate all S. enteritidis with MLAEW (FC = 43 – 48.5 mg L\(^{-1}\), pH 2.63, ORP = 1160 mV). Similarly, for Listeria monocytogenes, one study reported a complete inactivation within 10 min [21], while another study detected quite a few bacteria after 15-min treatment with MLAEW [22].

The discrepancies were assumed to arise from differences in experimental conditions (e.g. room temperature) and the characteristics of MLAEW used in these studies. In the presented study, all total bacteria collected from the aviary hen house were killed after 0.5-min treatment with MLAEW > 16.8 mg L\(^{-1}\), after 2-min treatment with MLAEW > 13.9 mg L\(^{-1}\), and after 5-min treatment with MLAEW > 7.2 mg L\(^{-1}\) (pH = 6.7 – 7.2, ORP = 784 – 851 mV). These results demonstrate that the bactericidal effect of MLAEW depends on the FC level, i.e. the lower the FC concentration of MLAEW, the longer the contact time required for effective inactivation.

A model (Eq. 2) was developed to predict minimal FC requirement for complete inactivation of airborne bacteria in aviary hen house as a function of air temperature, distance between nozzle and target, and contact time. It should be noted that this model was developed by assuming a perfect contact between bacteria and MLAEW (i.e., bacteria were fully immersed in the MLAEW). In a practical situation, however, perfect contact may be not readily achieved as the MLAEW aerosols cannot capture and encompass every single bacterium targeted. Therefore, this model must be interpreted as the minimum FC requirement for practice; and future work is needed to refine and validate the model to delineate field situations.

No Gram-negative bacteria were recovered from air in the aviary house; therefore, the inactivation test could not be performed. The reason for the negative air sample could be that the house air was free of Gram-negative bacteria, or their concentration was below detection limit of the AGI-30 [23]. Moreover, the number of air samplings in this experiment was relatively small, which could be another reason for the negative results. Previous studies have reported that the Gram-negative only account for a small portion in the total bacteria in livestock houses [24, 25], and are therefore more difficult to recover.

CONCLUSIONS

This presented study demonstrates that MLAEW is effective for inactivating airborne bacteria collected from an aviary house; however, FC loss and decreased anti-microbial effect of MLAEW aerosols occurred during spraying. Decrease of the antimicrobial component and effect was exacerbated over aerosol travel distance, and at higher air temperatures. The MLAEW with lower FC concentration needed a longer contact time to inactivate the bacteria. The FC concentrations needed to be at least 16.8, 13.9 and 7.2 mg L\(^{-1}\) for complete bacterial inactivation in 0.5-, 2- and 5-min treatments under the current experimental conditions. Further verification of the laboratory-scale results and modification of the resultant empirical model under field conditions are needed.

Acknowledgements

Funding for the study was supported in part by the USDA-NIFA Program (Award No. 2011–67021–20223), Midwest Poultry Research Program, Iowa Egg Council, and College of Agriculture and Life Sciences of Iowa State University.

REFERENCES

2. Miao Z, Chai T, Qi C, Cai Y, Liu J, Yuan W, et al. Composition and future work is needed to refine and validate the model under field conditions are needed.

Acknowledgements

Funding for the study was supported in part by the USDA-NIFA Program (Award No. 2011–67021–20223), Midwest Poultry Research Program, Iowa Egg Council, and College of Agriculture and Life Sciences of Iowa State University.

REFERENCES

2. Miao Z, Chai T, Qi C, Cai Y, Liu J, Yuan W, et al. Composition and future work is needed to refine and validate the model under field conditions are needed.

Acknowledgements

Funding for the study was supported in part by the USDA-NIFA Program (Award No. 2011–67021–20223), Midwest Poultry Research Program, Iowa Egg Council, and College of Agriculture and Life Sciences of Iowa State University.

REFERENCES

2. Miao Z, Chai T, Qi C, Cai Y, Liu J, Yuan W, et al. Composition and future work is needed to refine and validate the model under field conditions are needed.

Acknowledgements

Funding for the study was supported in part by the USDA-NIFA Program (Award No. 2011–67021–20223), Midwest Poultry Research Program, Iowa Egg Council, and College of Agriculture and Life Sciences of Iowa State University.

REFERENCES

